
Introspective and Adaptive Runtime Systems
Laxmikant (Sanjay) Kale

University of Illinois at Urbana-Champaign
kale@illinois.edu

Exascale hardware and applications bring numerous
new challenges to the fore. Programmers have to grapple
with the increasingly difficult challenges associated with
power, temperature, heterogeneity, latencies, transient
and persistent load imbalances, and strong scaling. The
magnitude of these challenges at exascale strongly argues
for lesser manual control by the programmer, and a
shift towards automatic resource management during
execution. In fact, such automation may be critical to
making application development at exascale a feasible
and productive effort.

At such scale, applications will increasingly need the
assistance of active, adaptive runtime systems that can
absorb the burden of orchestrating execution. However,
mainstream parallel programming paradigms like MPI
are low-level by design, with runtimes that are passive
on the resource management front. Research on intro-
spective and adaptive runtime systems is essential for
high performance and productivity.

To enable and empower adaptive runtime systems, it
will be necessary to change the programming model
and execution model so that it generates migratable and
separate work units and data units. The number of such
units need to be substantially larger than the physical
resources (such as number of cores), creating a degree
of freedom that an adaptive runtime system can exploit.
Furthermore, to maximize the potential for adaptivity,
the RTS should implement an asynchronous data driven
execution model, instead of abiding by the constraints of
the mainstream bulk synchronous SPMD approach. The
RTS then manages when and where work is executed,
and where data is placed. New research is needed on
developing highly scalable resource management strate-
gies that leverage this control to optimize application
performance as the application executes and evolves. We
next describe the challenges, opportunities and specific
research issues such an approach entails.

a) Introspection: To be effective, the RTS must
be able to observe application execution as it evolves.
This involves inherent application characteristics pos-
sibly at the level of basic blocks and communication

events. Involving the RTS in scheduling and mapping of
work/data units, as well as in mediating communication
between them, ensures that it has the hooks to do the
measurements needed. These measurements can be used
in reactive as well as predictive manner depending on
whether the principle of persistence applies (see below).
In addition to monitoring application behavior, the RTS
must also monitor its hardware substrate: it is expected
that the hardware will provide multiple signals and data,
as well as expose many control knobs. For example,
hardware may provide data on core temperatures, fre-
quencies of corrected failures in caches/memories, and
may allow software control of frequencies and volt-
ages. Providing a lightweight system to carry out such
monitoring and maintain databases, while tailoring the
measurements and the associated overhead to only the
metrics needed in particular application phases, is a
research issue that must be addressed [3].

b) Principle of persistence: Many, but not all,
exascale applications will have iterative and/or time-
stepping structure. In such applications communication
and computation behavior tends to persist over time,
because of the continuity of the underlying physical
and numerical structures. This heuristic, when it applies,
can be exploited to provide measurement based resource
management strategies by the runtime system.

c) Scalable load-balancing strategies: Once RTS
has a model of current application behavior, it needs to
act from time to time to migrate work and data units so
as to restore balance. The relatively coarse grained units
enable much efficient balancing, compared with having
to repartition the underlying (large) mash or other user
data structures. However, at exascale, even the number
of such migratable units is very large. Novel strategies
that avoid having to bring the communication graph on
one processor, and yet carry out efficient repartitioning
of objects, constitute another research issue [15]. Since
balancing and associated migrations are expensive, con-
tinuous yet lightweight utility analysis to decide when
to trigger load-balancing are also needed.



d) Localized load adjustments:: At exascale, global
load balancing steps will be proportionately more expen-
sive, especially in view of the synchronization they bring
about. Therefore, they will necessarily be infrequent.
During the interim, one will need additional strategies to
deal with load variations that arise. These can be tran-
sient (“noise”), arising from dynamic variations in the
hardware environment [8], or in low-level software, or
hardware-handled errors; But they can also be relatively
slow-varying, arising from power-related issues (see be-
low), or application evolution. Low overhead strategies
for mitigating the impact of these are needed, which will
exploit the presence of smaller-grained migratable tasks
(work-units) to smooth over the “noise”, and use “within-
neighborhood” migrations of tasks as needed.

e) Other imbalances: For applications such as
combinatorial search, a different category of load-
balancing systems are needed; also, for one-time algo-
rithms such as some of the graph problems, persistence
is not very useful; instead communication optimizations
by the RTS are the main benefit a RTS can provide, along
with the use of predictive or reactive load balancing [12].

f) Communication: The over-decomposition men-
tioned above helps reduce stress on communication
networks by spreading communication over time to some
extent. However, there is a complex trade-off between
communication, the degree of over-decomposition, the
degree of pipelining, and scheduling/communication
overhead. The RTS is in the perfect position to ob-
serve, experiment and tune such degree of pipelining;
strategies for such tuning are needed. In addition, new
load balancers that are topology aware [15] and reduce
the overall communication congestion, without requiring
expensive global graph partitioning strategies.

g) Collective operations: will be challenging at
exascale for several reasons. Implementing even simple
collectives such as reductions in a situation when the en-
tities contributing to reductions are spread over a subset
of processors, and are migrating in response to runtime
conditions, is itself challenging. Further, membership of
the collection may be changing due to dynamic cre-
ation/deletion as the application evolves. We need non-
blocking collective operations to avoid losing the use of
processor during execution of the collectives. Forming
collections (i.e. communicators in MPI parlance) without
high memory requirements is another challenge. We need
to develop algorithms for these operations; Further, these
algorithms should be adaptively selected and tuned by
the RTS, based on the evolving communication patterns
of the application and the hardware characteristics.

h) Power, energy, and thermal considerations: The
RTS can observe power-profiles of individual execu-
tion blocks, as well as core temperatures and power
consumption rates. New strategies for effecting multi-
dimensional optimizations between execution time and
these metrics are needed. Preliminary work [13] has
shown the potential for such strategies, in conjunction
with the ability to dynamically balanced load.

i) Heterogeneity: It is expected that the exascale
hardware will contain a heterogeneous mix of computing
elements. Deciding how to map work units to physical
resources Deciding how to apportion work between
accelerator and host cores, and across different nodes,
is a two-dimensional optimization problem that will
be taxing for the programmer to handle explicitly at
exascale. The RTS should automate this task, building
up on the preliminary work such as. [7], [9], [10].

j) Resilience: This is a large topic, which should
be addressed separately. We only note that an adaptive
RTS will necessarily play an important role in resilience
protocols at exascale [11], [16].
Related work: Concepts related to the proposed ap-
proach have been explored in Charm++ [5], [6], X10 [2],
Chapel [1], Parallex/HPX [4], QuickThreads [14] etc.
The specific related work is cited above when feasible.
Challenges addressed: power/energy/temperature, load
balancing, strong scaling requirements, heterogeneity,
resilience, communication costs (as discussed above).
Maturity: Some capabilities of RTSs are demonstrated
in Charm++, along with feasibility of building useful
programming models with them. Exascale requires ex-
tending/scaling these ideas.
Uniqueness (to Exascale): The capabilities needed, as
described above, are uniquely needed for exascale. Base-
line, medium scale capabilities exist, but are not adequate
to exascale because of the scaling limits of load bal-
ancers, new needs for stronger control of power/energy,
etc.
Novelty: Although the overall approach inherits some
DNA from ongoing work, the challenges outlined above
arise only at exascale, and largely, have not been ad-
dressed in the runtime systems work so far.
Effort: To develop/demonstrate techniques in a research
setting, for one programming paradigm, will require a
medium size project for 3-5 years, preferably spread
over multiple institutions. To make a truly universal
introspective runtime system, applicable to multiple pro-
gramming models (including, say, Charm++, Parallex,
extended Chapel/X10, ..) will require a multi-institution
large project.



REFERENCES

[1] B. Chamberlain, D. Callahan, and H. Zima. Parallel pro-
grammability and the chapel language. Int. J. High Perform.
Comput. Appl., 21:291–312, August 2007.

[2] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In OOP-
SLA ’05: Proceedings of the 20th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages,
and applications, pages 519–538, New York, NY, USA, 2005.
ACM.

[3] I. Dooley. Intelligent Runtime Tuning of Parallel
Applications With Control Points. PhD thesis, Dept.
of Computer Science, University of Illinois, 2010.
http://charm.cs.uiuc.edu/papers/DooleyPhDThesis10.shtml.

[4] G. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu.
ParalleX: A study of a new parallel computation model. In EEE
International Parallel and Distributed Processing Symposium,
2007, pages 1 –6, march 2007.

[5] L. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain, P. Jetley, J. Lif-
flander, P. Miller, Y. Sun, R. Venkataraman, L. Wesolowski,
and G. Zheng. Charm++ for productivity and performance:
A submission to the 2011 HPC class II challenge. Technical
Report 11-49, Parallel Programming Laboratory, November
2011.

[6] L. Kalé and S. Krishnan. CHARM++: A Portable Concurrent
Object Oriented System Based on C++. In A. Paepcke,
editor, Proceedings of OOPSLA’93, pages 91–108. ACM Press,
September 1993.

[7] L. V. Kale, D. M. Kunzman, and L. Wesolowski. Accelerator
Support in the Charm++ Parallel Programming Model. In
J. Kurzak, D. A. Bader, and J. Dongarra, editors, Scientific
Computing with Multicore and Accelerators, pages 393–412.
CRC Press, Taylor & Francis Group, 2011.

[8] V. Kale and W. Gropp. Load balancing for regular meshes
on smps with mpi. In Proceedings of the 17th European MPI
users’ group meeting conference on Recent advances in the
message passing interface, EuroMPI’10, pages 229–238, Berlin,
Heidelberg, 2010. Springer-Verlag.

[9] D. Kunzman, G. Zheng, E. Bohm, and L. V. Kalé. Charm++,
Offload API, and the Cell Processor. In Proceedings of the
Workshop on Programming Models for Ubiquitous Parallelism,
Seattle, WA, USA, September 2006.

[10] D. M. Kunzman and L. V. Kalé. Towards a framework for
abstracting accelerators in parallel applications: experience with
cell. In SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis,
pages 1–12, New York, NY, USA, 2009. ACM.

[11] E. Meneses, G. Bronevetsky, and L. V. Kale. Dynamic load
balance for optimized message logging in fault tolerant hpc
applications. In IEEE International Conference on Cluster
Computing (Cluster) 2011, September 2011.

[12] O. Sarood, A. Gupta, and L. V. Kale. Cloud Friendly Load
Balancing for HPC Applications: Preliminary Work. In Interna-
tional Workshop on Cloud Technologies for High Performance
Computing at ICPP, Pittsburgh, PA, USA, September 2012.

[13] O. Sarood and L. V. Kalé. A ‘cool’ load balancer for parallel
applications. In Proceedings of the 2011 ACM/IEEE conference
on Supercomputing, Seattle, WA, November 2011.

[14] K. B. Wheeler, R. C. Murphy, and D. Thain. Qthreads: An
API for programming with millions of lightweight threads.
In International Parallel and Distributed Processing Sympo-

sium/International Parallel Processing Symposium, pages 1–8,
2008.

[15] G. Zheng, A. Bhatele, E. Meneses, and L. V. Kale. Periodic
Hierarchical Load Balancing for Large Supercomputers. Inter-
national Journal of High Performance Computing Applications
(IJHPCA), March 2011.

[16] G. Zheng, X. Ni, E. Meneses, and L. Kale. A scalable double in-
memory checkpoint and restart scheme towards exascale. Tech-
nical Report 12-04, Parallel Programming Laboratory, Feburary
2012.


	References

